

Solar Heat for Cities, Towns and Energy Communities

Introduction to solar district heating by the IEA SHC Task 68 - Efficient Solar District Heating Systems https://task68.iea-shc.org/

An enormous task...

... decarbonising around **6,000 district** heating networks across Europe.

... solar heat is one of the proven, available, cost-effective measures to help complete this enormous task.

In this presentation we would like to show you how **solar district heating** works and who is using it successfully already.

Graphic: IEA SHC Task 55

Lemgo, Germany: Reducing gas price risk

DANIEL STEUBEProject and Energy Manager at Stadtwerke Lemgo

"Our 5.2 MW solar collector field has been feeding into the city of Lemgo's heating network since April 2022. It benefits from very low operational costs over its entire life cycle and also reduces the CO₂ and gas price risk."

Portrait photo (left): Guido Broer

Photo (right): Viessmann

266 towns and cities in Europe use solar heat

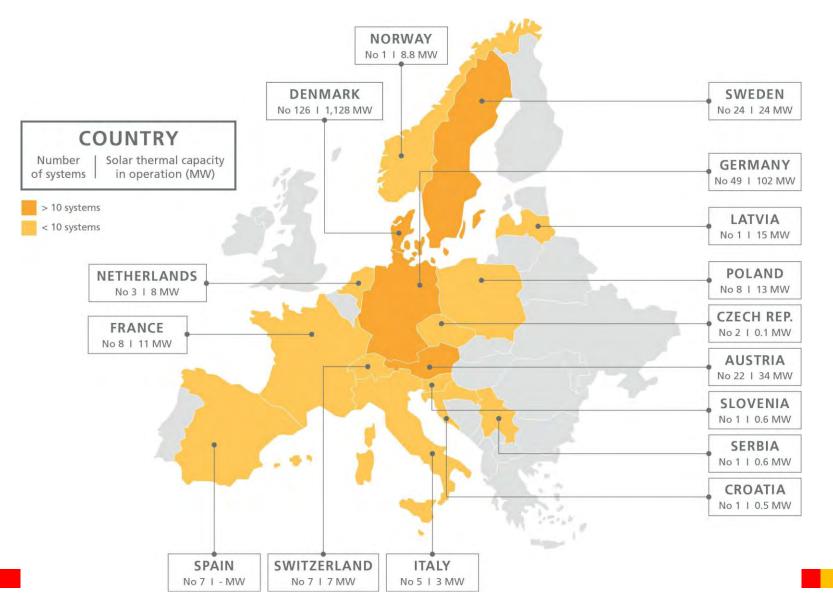


Chart: IEA SHC Task 68 Source: IEA SHC Solar Heat Worldwide Report Ed. 2023 /

own research

Multi-MW solar district heating plants on the rise across Europe

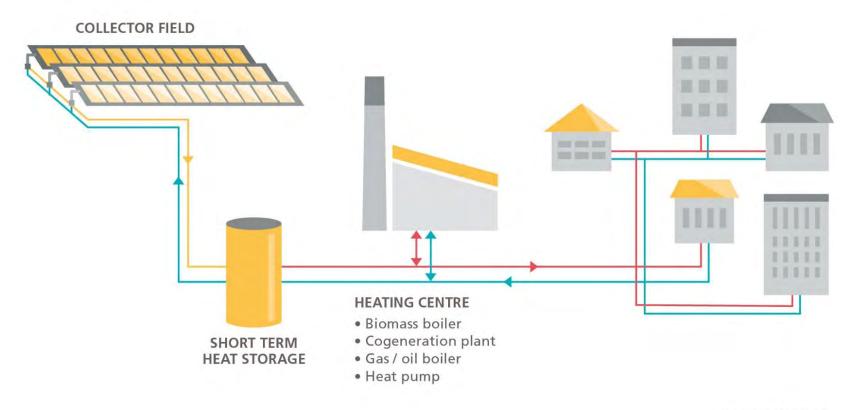

- ✓ 37 MW collector field under construction in Groningen, Netherlands. 30 years solar heat delivery contract with utility company Warmtestad.
- ✓ The municipal utility in Leipzig, Germany, placed the order for a 41 MW collector field in April 2023
- ✓ Financing is secured for a 41 MW collector field in Pristina, Kosovo, planned by the local utility Termokos.

Photo: Ritter Solar XL

How does solar district heating work?

IEA SHC TASK 55

The advantages

SMART CITIES USE SOLAR HEAT

MEET YOUR CLIMATE TARGETS

Solar heat is emission-free and 100% renewable.

INCREASE ENERGY SECURITY

Solar heat is an unlimited resource of your municipality.

KEEP HEAT AFFORDABLE

Price of solar heat will remain stable for at least 20 years.

CREATE LOCAL JOBS

Solar heat replaces imported fuels and provides new jobs.

IEA SHC TASK 55

Mengsberg, Germany, heats with 100 % renewables

Photo: Bioenergiegenossenschaft Mengsberg

The German village of Mengsberg has built up an energy community that owns and operates a 100 % renewable district heating network with a wood chip boiler and a solar collector field.

Everyone who wants to join the energy cooperation makes a deposit of EUR 4,000 per building. In return, the transfer station is installed and the district heating pipes connected to the house.

Mengsberg's energy community owns the district heating system

Nov 2013 Nov 2018 Apr 2017 Contract signing with turnkey Feasibility study Handing over the provider for district heat for renewable heat renewable district heating system supply system network and heating centre Oct 2017 Nov 2014 Founding of the Cooperative Issuance of Company Bioenergiebuilding permit genossenschaft Mengsberg

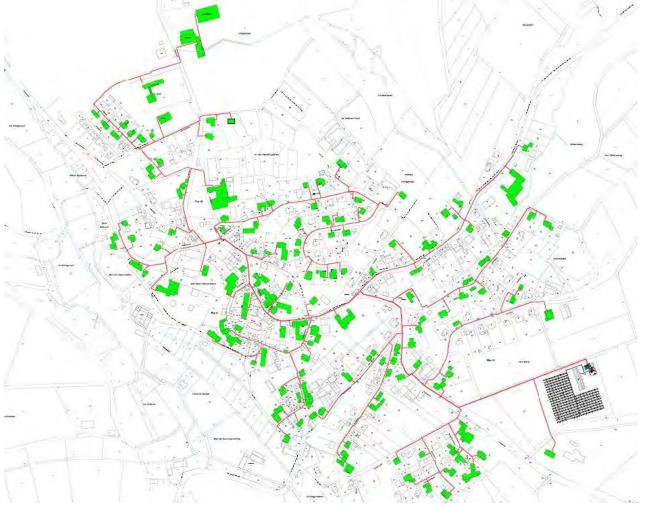
141 participants

4,000 EUR

deposit per building for the transfer station and the piping to the house.

112 EUR/MWh

heat price (status November 2022). No basic price is charged.


Graphic: Task 68

Source: Bioenergiegenossenschaft

Mengsberg

Mengsberg's energy community owns the district heating system

Site	Mengsberg, Germany
Inhabitants	925
Connected households	149
Length of piping	9 km
Wood chip boiler	1.1 MW
Solar thermal field	2.1 MW
Annual solar share	17 %

Map/Source for Table: Bioenergiegenossenschaft Mengsberg

Operator models for energy communities

- 1. Foundation of an energy cooperative as a legal entity to own and operate the heat network
- + heat prices only reflect the real costs, no trade profit margins included
- a lot of voluntary work is required by the board members
- 2. Energy community signs a contract with a private heat supply contractor or the public or neighbouring utility company to creates, owns and operates the heat network
- + little responsibility for the members of the energy community
- + contractor/utility has specialist knowhow about renewable heat networks
- slightly higher heat prices because of the profit margin of the heat contractor

Manual about energy communities (in German):

https://www.solarewaermenetze.de/wpcontent/uploads/2022/06/2020_Inf oblatt-Solare-Waermenetze-Nr.7-Energiedoerfer-mit-erneuerb.-Waermeversorg.-Modelle-fuererfolgreichen-Betrieb-von-Waermenetzsys. Solnet-4.0.pdf

Grenaa in Denmark: Reduce the pressure on biomass

SØREN GERTSEN
Director at
Greena Varnemærk

"Our board of directors shares one vision: to use solar to supply consumers with costeffective heat. And we will save costs when the system produces solar energy in summer because we can shut down one of our two wood chip boilers during that time." Grenaa Varmeværk offers the fifth lowest district heating price in a comparison study from June 2022 carried out by the Danish Supply Authority.

Photo: Savosolar

Grenaa in Denmark: Solar heat and biomass are a good match



Net capital costs 4.7 million EUR Specific costs 227 EUR/m² excl. VAT

O&M costs...... 12,500 EUR/year

Solar yield 2021 10.2 GWh/year 493 kWh/m²

FLAT PLATE 20,673 m², 14.5 MW Savosolar, Finland

Solar heat and biomass are a good match

Save money: thanks to the solar system, less wood chips need to be bought.

Preserve the biomass boiler: the solar system takes over the summer operation, the boiler is less stressed → service life is extended.

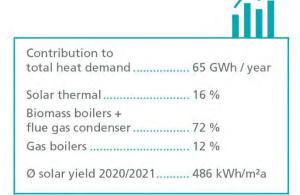
Protect the climate and the environment: reduced emissions through CO2 and air-pollutant-free solar energy.

Photo: Nahwärme Eugendorf, Austria

Latvian utility company is cutting down on fossil fuel use

INA BERZINA-VEITA

Managing Director at
Salaspils Siltums


"We've been working on this project since we visited Denmark in 2016 to attend a conference on district heating. The aim is to reduce our carbon footprint and become less reliant on fossil fuels."

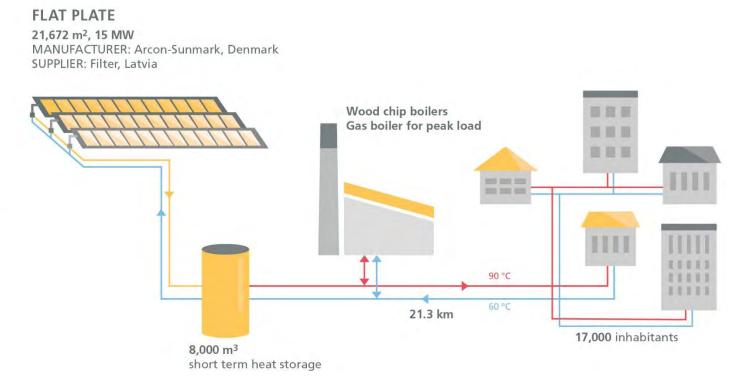
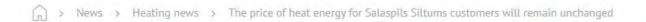


Photo: Salaspils Siltums

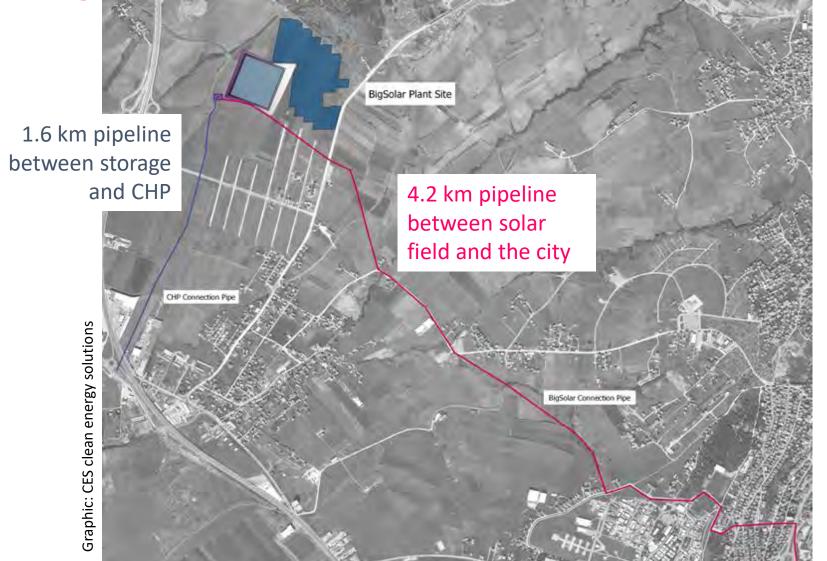


Salaspils, Latvia: 90 % renewable district heat since 2019

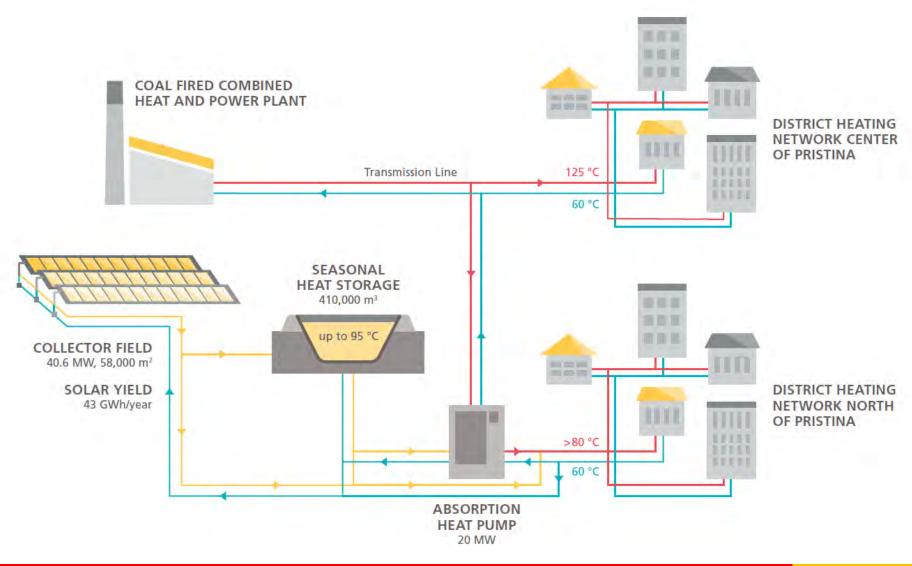
Salaspils, Latvia: Constant solar heat prices over 25 years

The price of heat energy for Salaspils Siltums customers will remain unchanged

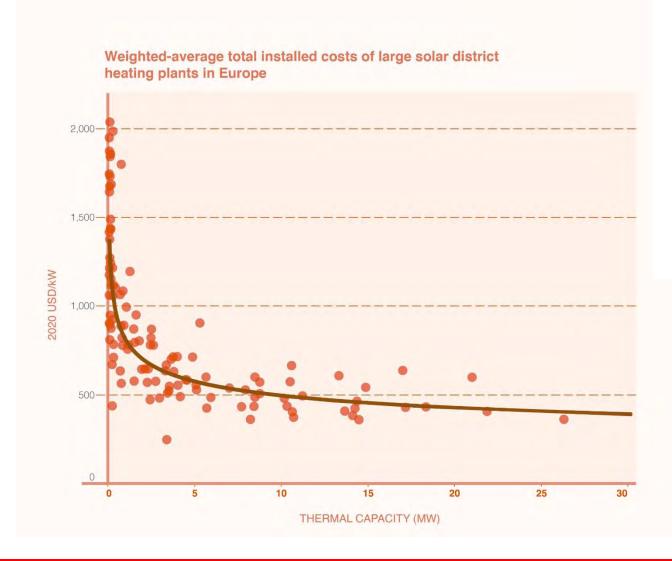
31 August 2021 HEATING NEWS


"We are proud to have taken care of fuel diversification in the past, thus avoiding the effects of rapid fluctuations in the price of natural gas. The price of heat energy for Salaspils Siltums customers is stable and will not be increased."

Source: Screenshot from https://salaspilssiltums.lv/


Big Solar Pristina replaced coal-based electric heating

Site	Pristina, Kosovo
New district heat consumers	38,000
Annual solar share	12 %
Capacity of solar field	41 MW
Seasonal storage	408,000 m ³
Investment costs including extension of DH grid	EUR 80 million
Estimate start of construction	End of 2024


Big Solar Pristina: absorption heat pumps are key

The absorption heat pumps heat up the water from the seasonal storage tank, if it does not meet the demand of the supply line for the heating network.

Investment costs and heat prices

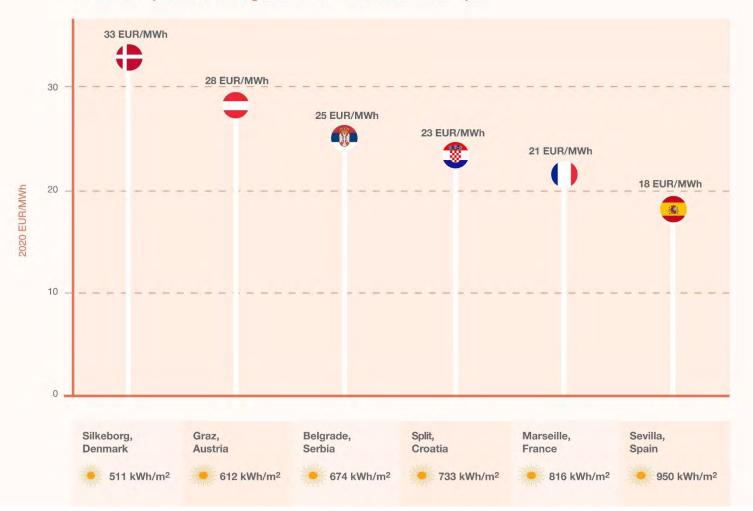
The trend curve suggests that for every doubling of the size of the plant, total installed costs decline by 14%.

How to read this chart:

Each orange circle shows one SDH project commissioned between 2010 and 2021 in Europe. 97 % of the SDH projects have been installed in three countries Austria, Germany and Denmark.

COST ANALYSIS: IRENA

110 MW in Silkeborg, Denmark, sets lowest benchmark costs



Site	Silkeborg, Denmark
Connected heat consumers	21,000
Annual solar share	20 %
Capacity of solar field	110 MW
Commissioning date	December 2016
Investment costs	DKK 250 million [in 2016]
	EUR 35 million [in 2020]

Photo: Arcon Sunmark

Investment costs and heat prices

Weighted-average LCOH assuming the capital costs of the 110 MW SDH plant of Silkeborg at different sites in Southern Europe

The 110 MW SDH plant in Silkeborg, Denmark, reaches 511 kWh/m² per year at a site with global annual horizontal irradiation of 1,006 kWh/m². The LCOH were calculated with the same total installed costs but for the higher specific solar yield at sunnier regions (linear extrapolation).

Average annual solar yield

Levelised cost of solar heat over 25 years of operation for a 110 MW plant is between 18 and 33 EUR/MWh.

COST ANALYSIS: IRENA

Fast installation with prefabricated large collector panels

The larger the individual collectors, the easier and fast it is to install a system by crane. A dozen manufacturers in Germany, Austria and Finland have specialised in the manufacture of these prefabricated units with gross areas of 5 m² to 16 m².

Find a list of suppliers online: https://solarthermalworld.org/news/larg e-prefab-sdh-collectors-design-andyields/

Photo: Greenonetec

Serbian municipality is striving for more after successful pilot project

Photo: JKP Grejanje

donit forget!

Design, planning and obtaining permissions usually takes much longer than the construction of the solar plant itself.

Oct 2015

Scheduling completion for the end of December 2016 Jan 2017

JKP Grejanje started up the 906 m² plant Jul 2019

Municipality council starts prefeasibility study Nov 2019

Commissioning of additional 495 m² collector area

May 2021

Study confirmed 35,000 m² field with 150,000 m³ storage

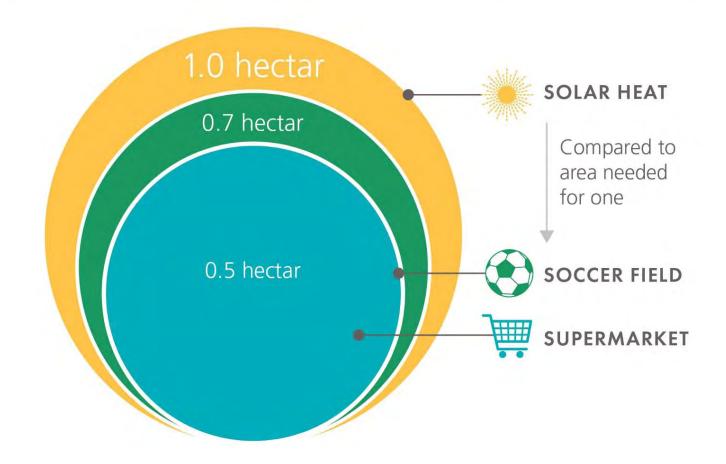
Dec 2011

Preliminary approval for funding Feb 2016

Starting procurement process

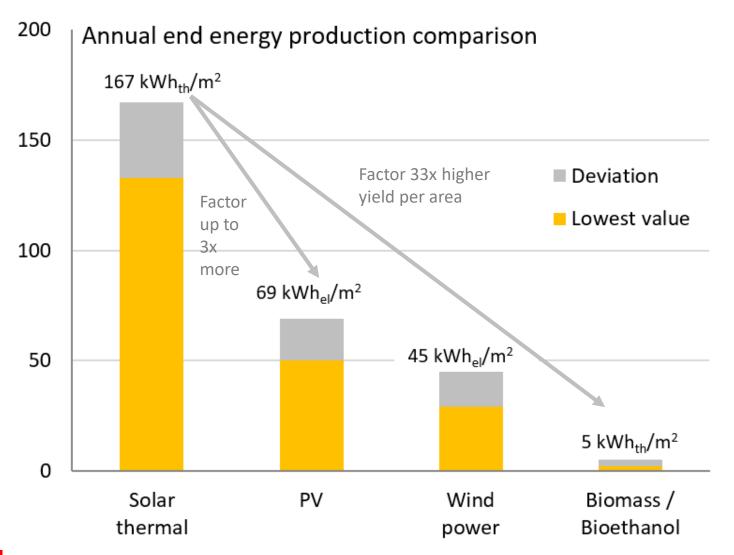
Jan 2019

Positive balance of two-years test phase Oct 2019


Study finalised with 35,000 m² collector field, seasonal storage and 15-MW heat pump Jul 2020

Municipality council agrees to conduct feasibility study and land surrounded by railroad tracks envisaged for the project

HOW MUCH AREA FOR SDH DO YOU NEED ...


... to meet 20 % of the total annual heat demand from 1,000 households living in old buildings?

IEA SHC TASK 55

Yield per area comparison of different renewable technologies

Solar thermal harvests three times more kilowatt hours than photovoltaics and 33 times more than biomass on the same area.

1 MW solar heat capacity requires an area of 1,350 m²

8,300 m² collector area on 20,000 m² land

You need around twice as much land as the size of the collector field.

Source: Brochure about solar district heating from BSW Solar, Germany Photos: Stadtwerke Senftenberg, Stadtwerke Lemgo, Stadtwerke Ludwigsburg-Kornwestheim

Each temperature level has a suitable collector type

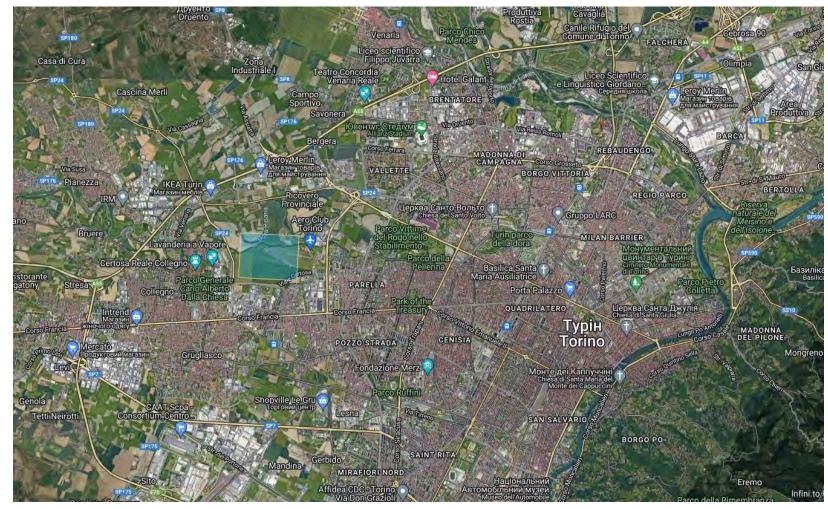
Concentrating collectors (Point Focus Fresnel) deliver heat at around **160** °C in Hørsholm, Denmark

Combination of flat plate collectors (up to 70 °C) and parabolic trough collectors (here operated at 95 °C but could go higher) in Taars, Denmark

112 smart cities in Europe

EU Commission's target: 112 selected mission cities should be climate-neutral by 2030.

The solar field simulator of Task 68 "Efficient Solar District Heating Systems" identifies the area that is necessary to cover 20 % of the total district heat demand in 12 of these cities using the sun.


Field simulator https://www.absolicon.com/fs/

Source: https://eurocities.eu/

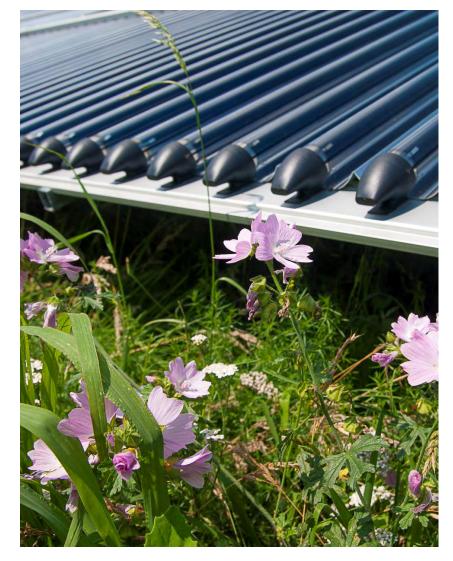
INTERNATIONAL ENERGY AGENCY

There is space for solar heat even in larger cities

Site	Turin/Torino, Italy
Inhabitants	847,000
Heat demand in heating grid	1,815 GWh/a
Solar irradiation	1,476 kWh/m2a
Land size of solar field	129.7 hectares
Capacity of solar field	401.1 MW
Solar share	20 %

Source: https://www.absolicon.com/fs/

There is space for solar heat even in larger cities


Source: https:/	//www.absolicon.com/fs/
-----------------	-------------------------

Site	Saragossa/ Zaragoza, Spain
Inhabitants	736,000
Heat demand in heating grid	1,412 GWh
Solar irradiation	1,877 kWh/m2a
Land size of solar field	75.5 hectares
Capacity of solar field	233.5 MW
Solar share	20 %

A golf course has between 60 and 90 hectare.

Solar collector areas with ecological upgrade

Collector fields do not seal the ground and give plants and animals a good chance of continuing to use the area.

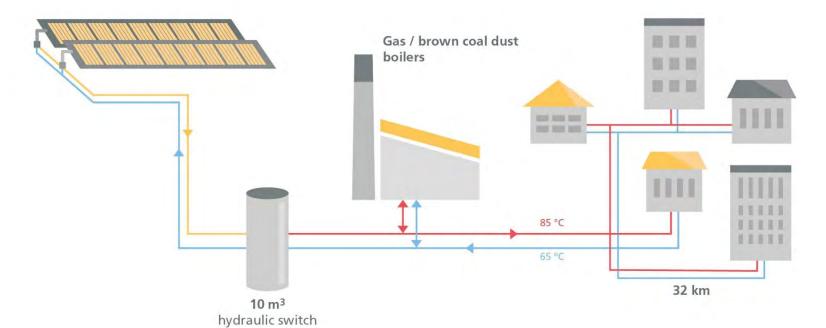
Senftenberg in Germany: No solar storage needed

The 8,300 m² vacuum tube collector field in Senftenberg can cover the complete energy demand in the heat network on a normal summer day.

It contributes 4.2 % of the annual demand of the heat network, so no solar thermal storage is necessary.

A bypass was also provided in the heating centre, so that the 2,000 m³ water content of the heat network can absorb the solar heat of the collector field output on particularly sunny days.

Source: BSW Solar, Solare Nah/Fernwärme Deutschland: https://www.solarwirtschaft.de/wp-content/uploads/2022/05/bsw solare fernwaerme.pdf


Photo: Stadtwerke Senftenberg

Senftenberg in Germany: Good yields over five years

VACUUM TUBE COLLECTORS

8,300 m², 5 MW Ritter XL Solar, Germany

Source: BSW Solar, Solare Nah/Fernwärme Deutschland: https://www.solarwirtschaft.de/wp-content/uploads/2022/05/bsw_solare_fernwaerme.pdf

Each temperature level has a suitable collector type

Photo: TVP Solar

This 816 m² solar field consists of special high-vacuum flat-plate collectors supplying heat to the heat network in Geneva, Switzerland, at a temperature of 85 °C, even in winter. In 2021, 539 MWh were delivered, equivalent to 687 kWh/m².

Each temperature level has a suitable collector type

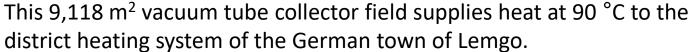


Photo: Viessmann

By adjusting the speed of the pumps in the solar circuit, the target temperature of 90 °C is consistently achieved.

Distance between collector field and heat network

To minimise losses and reduce costs for the transport pipelines the collector field should be placed as close to the heat network as possible.

But the maximum distance between heat network and solar thermal plant is heavily dependent on the size of the collector field. If the costs of land are expensive close to towns and cities and the collector field is large, e.g. 70 MW, it can be placed three times further away than a 7 MW collector field, potentially resulting in the same costs.

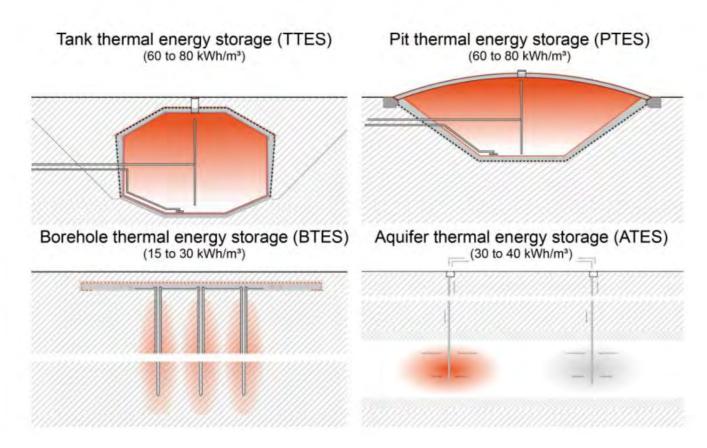


Photo: AEE INTEC

How big does the solar storage need to be?

- At solar shares below 5 % **no daily storage** tank is necessary.
- For solar shares between 10 and 20 % a daily storage tank is required with 50 and 100 litres of storage per square metre of collector area.
- If solar heat should cover 100 % of the heat demand in the summer months, a storage volume of above 200 litres per square metre collector area is recommended.
- If solar shares of above 30 % over the year are to be achieved, then a seasonal storage tank can be required.

Photo: AEE INTEC



Storing solar energy in summer for heating in winter

Seasonal storage concepts

Solar district heating plants already have relevant experience with pit thermal energy stores, a proven and competitive seasonal energy storage option.

Chart: Solites

Construction of a pit heat storage

 Dig a hole in the ground and put the soil around the edges.

2. Add a watertight liner at the bottom of the pit.

3. Fill the pit with water.

4. Put an insulating and floating cover on top.

PHOTOS: ARCON-SUNMARK

A pit heat storage tank with more than 50,000 m³ loses 10 % of the stored energy over the year. The losses depend significantly on the size and construction of the cover.

Dronninglund in Denmark with 62,000 m³ had measured losses 8 % over the year Source: Aalborg CSP

Summary: Solar heat is a team player

- ✓ Together with biomass boilers → to form a 100 % renewable supply
- ✓ Together with seasonal storages → to form a flexible and efficient energy management system including power to heat
- ✓ Together with heat pumps → to form a decarbonization strategy even for district heating grids with higher temperatures above 80 °C

Where can you get further technical advice?

Research and engineering services:

IEA SHC Task 68 task68.iea-shc.org/

www.solites.de/en/ in Germany

planenergi.eu/ in Denmark

www.aee-intec.at/ in Austria

AEE INTEC

<u>www.best-research.eu</u> in Austria

Where can you get further technical advice?

Technology and turnkey suppliers:

Aalborg CSP, Denmark: https://www.aalborgcsp.com/

Absolicon, Sweden: https://www.absolicon.com/

Greenonetec, Austria: https://www.greenonetec.com/

Heliac, Denmark: https://www.heliac.dk/

New Heat, France: https://newheat.com/en/

Ritter XL Solar, Germany: https://www.ritter-xl-solar.de/

Savosolar, Finland: https://savosolar.com/

Solarlite CSP Technology, Germany: https://www.solarlite.de/

Solid Solar Energy Systems, Austria: https://www.solid.at/de/home.html

TVP Solar, Switzerland: https://www.tvpsolar.com/

Viessmann, Germany: https://www.viessmann.de/

44

Source: Fotolia 69214426 M

Thanks for your attention!

IEA SHC Task 68: https://task68.iea-shc.org/